Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.139
Filtrar
1.
Nutrients ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38613029

RESUMO

Methionine dependence is a characteristic of most cancer cells where they are unable to proliferate when the essential amino acid methionine is replaced with its precursor homocysteine in the growing media. Normal cells, on the other hand, thrive under these conditions and are referred to as methionine-independent. The reaction that adds a methyl group from 5-methyltetrahydrofolate to homocysteine to regenerate methionine is catalyzed by the enzyme methionine synthase with the cofactor cobalamin (vitamin B12). However, decades of research have shown that methionine dependence in cancer is not due to a defect in the activity of methionine synthase. Cobalamin metabolism has been tied to the dependent phenotype in rare cell lines. We have identified a human colorectal cancer cell line in which the cells regain the ability to proliferation in methionine-free, L-homocystine-supplemented media when cyanocobalamin is supplemented at a level of 1 µg/mL. In human SW48 cells, methionine replacement with L-homocystine does not induce any measurable increase in apoptosis or reactive oxygen species production in this cell line. Rather, proliferation is halted, then restored in the presence of cyanocobalamin. Our data show that supplementation with cyanocobalamin prevents the activation of the integrated stress response (ISR) in methionine-deprived media in this cell line. The ISR-associated cell cycle arrest, characteristic of methionine-dependence in cancer, is also prevented, leading to the continuation of proliferation in methionine-deprived SW48 cells with cobalamin. Our results highlight differences between cancer cell lines in the response to cobalamin supplementation in the context of methionine dependence.


Assuntos
Neoplasias Colorretais , Metionina , Humanos , Metionina/farmacologia , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Vitamina B 12/farmacologia , Homocistina , Racemetionina , Linhagem Celular , Homocisteína , Neoplasias Colorretais/tratamento farmacológico
2.
BMC Plant Biol ; 24(1): 199, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500044

RESUMO

BACKGROUND: The selenomethionine cycle (SeMTC) is a crucial pathway for the metabolism of selenium. The basic bioinformatics and functions of four enzymes involved in the cycle including S-adenosyl-methionine synthase (MAT), SAM-dependent methyltransferase (MTase), S-adenosyl-homocysteine hydrolase (SAHH) and methionine synthase (MTR), have been extensively reported in many eukaryotes. The identification and functional analyses of SeMTC genes/proteins in Cardamine hupingshanensis and their response to selenium stress have not yet been reported. RESULTS: In this study, 45 genes involved in SeMTC were identified in the C. hupingshanensis genome. Phylogenetic analysis showed that seven genes from ChMAT were clustered into four branches, twenty-seven genes from ChCOMT were clustered into two branches, four genes from ChSAHH were clustered into two branches, and seven genes from ChMTR were clustered into three branches. These genes were resided on 16 chromosomes. Gene structure and homologous protein modeling analysis illustrated that proteins in the same family are relatively conserved and have similar functions. Molecular docking showed that the affinity of SeMTC enzymes for selenium metabolites was higher than that for sulfur metabolites. The key active site residues identified for ChMAT were Ala269 and Lys273, while Leu221/231 and Gly207/249 were determined as the crucial residues for ChCOMT. For ChSAHH, the essential active site residues were found to be Asn87, Asp139 and Thr206/207/208/325. Ile204, Ser111/329/377, Asp70/206/254, and His329/332/380 were identified as the critical active site residues for ChMTR. In addition, the results of the expression levels of four enzymes under selenium stress revealed that ChMAT3-1 genes were upregulated approximately 18-fold, ChCOMT9-1 was upregulated approximately 38.7-fold, ChSAHH1-2 was upregulated approximately 11.6-fold, and ChMTR3-2 genes were upregulated approximately 28-fold. These verified that SeMTC enzymes were involved in response to selenium stress to varying degrees. CONCLUSIONS: The results of this research are instrumental for further functional investigation of SeMTC in C. hupingshanensis. This also lays a solid foundation for deeper investigations into the physiological and biochemical mechanisms underlying selenium metabolism in plants.


Assuntos
Cardamine , Selênio , Selenometionina , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Simulação de Acoplamento Molecular , Sequência de Aminoácidos , Filogenia , Proteínas
3.
Proc Natl Acad Sci U S A ; 121(6): e2204075121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306482

RESUMO

Coastal Antarctic marine ecosystems are significant in carbon cycling because of their intense seasonal phytoplankton blooms. Southern Ocean algae are primarily limited by light and iron (Fe) and can be co-limited by cobalamin (vitamin B12). Micronutrient limitation controls productivity and shapes the composition of blooms which are typically dominated by either diatoms or the haptophyte Phaeocystis antarctica. However, the vitamin requirements and ecophysiology of the keystone species P. antarctica remain poorly characterized. Using cultures, physiological analysis, and comparative omics, we examined the response of P. antarctica to a matrix of Fe-B12 conditions. We show that P. antarctica is not auxotrophic for B12, as previously suggested, and identify mechanisms underlying its B12 response in cultures of predominantly solitary and colonial cells. A combination of proteomics and proteogenomics reveals a B12-independent methionine synthase fusion protein (MetE-fusion) that is expressed under vitamin limitation and interreplaced with the B12-dependent isoform under replete conditions. Database searches return homologues of the MetE-fusion protein in multiple Phaeocystis species and in a wide range of marine microbes, including other photosynthetic eukaryotes with polymorphic life cycles as well as bacterioplankton. Furthermore, we find MetE-fusion homologues expressed in metaproteomic and metatranscriptomic field samples in polar and more geographically widespread regions. As climate change impacts micronutrient availability in the coastal Southern Ocean, our finding that P. antarctica has a flexible B12 metabolism has implications for its relative fitness compared to B12-auxotrophic diatoms and for the detection of B12-stress in a more diverse set of marine microbes.


Assuntos
Diatomáceas , Haptófitas , Haptófitas/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Ecossistema , Fitoplâncton/metabolismo , Diatomáceas/genética , Vitaminas/metabolismo , Micronutrientes/metabolismo
4.
PeerJ ; 12: e16595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38239295

RESUMO

Background: Plasmodium falciparum possesses a cobalamin-dependent methionine synthase (MS). MS is putatively encoded by the PF3D7_1233700 gene, which is orthologous and syntenic in Plasmodium. However, its vulnerability as an antimalarial target has not been assessed. Methods: We edited the PF3D7_1233700 and PF3D7_0417200 (dihydrofolate reductase-thymidylate synthase, DHFR-TS) genes and obtained transgenic P. falciparum parasites expressing epitope-tagged target proteins under the control of the glmS ribozyme. Conditional loss-of-function mutants were obtained by treating transgenic parasites with glucosamine. Results: DHFR-TS, but not MS mutants showed a significant proliferation defect over 96 h, suggesting that P. falciparum MS is not a vulnerable antimalarial target.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Antimaláricos/farmacologia , Plasmodium falciparum/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase
6.
Mol Genet Metab ; 141(1): 108111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103461

RESUMO

Methionine dependence, the inability to grow in culture when methionine in the medium is replaced by its metabolic precursor homocysteine, occurs in many tumor cell lines. In most affected lines, the cause of methionine dependence is not known. An exception is the melanoma-derived cell line MeWo-LC1, in which hypermethylation of the MMACHC gene is associated with decreased MMACHC expression. Decreased expression results in decreased provision of the methylcobalamin cofactor required for activity of methionine synthase and thus decreased conversion of homocysteine to methionine. Analysis of data in the Cancer Cell Line Encyclopedia Archive demonstrated that MMACHC hypermethylation and decreased MMACHC expression occurred more frequently in melanoma cell lines when compared to other tumor cell lines. We further investigated methionine dependence and aspects of MMACHC function in a panel of six melanoma lines, including both melanoma lines with known methionine dependence status (MeWo, which is methionine independent, and A375, which is methionine dependent). We found that the previously unclassified melanoma lines HMCB, Colo829 and SH-4 were methionine dependent, while SK-Mel-28 was methionine independent. However, despite varying levels of MMACHC methylation and expression, none of the tested lines had decreased methylcobalamin and adenosylcobalamin synthesis as seen in MeWo-LC1, and the functions of both cobalamin-dependent enzymes methionine synthase and methylmalonyl-CoA mutase were intact. Thus, while melanoma lines were characterized by relatively high levels of MMACHC methylation and low expression, the defect in metabolism observed in MeWo-LC1 was unique, and decreased MMACHC expression was not a cause of methionine dependence in the other melanoma lines.


Assuntos
Melanoma , Metionina , Humanos , Metionina/metabolismo , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Racemetionina/metabolismo , Linhagem Celular Tumoral , Metilação de DNA , Homocisteína/metabolismo , Vitamina B 12/metabolismo , Oxirredutases/metabolismo
7.
Nat Commun ; 14(1): 6365, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821448

RESUMO

Cobalamin-dependent methionine synthase (MS) is a key enzyme in methionine and folate one-carbon metabolism. MS is a large multi-domain protein capable of binding and activating three substrates: homocysteine, folate, and S-adenosylmethionine for methylation. Achieving three chemically distinct methylations necessitates significant domain rearrangements to facilitate substrate access to the cobalamin cofactor at the right time. The distinct conformations required for each reaction have eluded structural characterization as its inherently dynamic nature renders structural studies difficult. Here, we use a thermophilic MS homolog (tMS) as a functional MS model. Its exceptional stability enabled characterization of MS in the absence of cobalamin, marking the only studies of a cobalamin-binding protein in its apoenzyme state. More importantly, we report the high-resolution full-length MS structure, ending a multi-decade quest. We also capture cobalamin loading in crystallo, providing structural insights into holoenzyme formation. Our work paves the way for unraveling how MS orchestrates large-scale domain rearrangements crucial for achieving challenging chemistries.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Metionina , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Metionina/metabolismo , S-Adenosilmetionina/metabolismo , Ácido Fólico , Vitamina B 12/metabolismo
8.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628752

RESUMO

We investigated the association between methylenetetrahydrofolate reductase (gene MTHFR 677C>T, rs1801133), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR 2756A>G, rs1805087), and methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1 (gene MTHFD1 1958G>A, rs2236225)-well-studied functional variants involved in one-carbon metabolism-and gynecologic cancer risk, and the interaction between these polymorphisms and depression. A total of 200 gynecologic cancer cases and 240 healthy controls were recruited to participate in this study. Three single-nucleotide variants (SNVs) (rs1801133, rs1805087, rs2236225) were genotyped using the PCR-restriction fragment length polymorphism method. Depression was assessed in all patients using the Hamilton Depression Scale. Depression was statistically significantly more frequent in women with gynecologic cancers (69.5% vs. 34.2% in controls, p < 0.001). MTHFD1 rs2236225 was associated with an increased risk of gynecologic cancers (in dominant OR = 1.53, p = 0.033, and in log-additive models OR = 1.37, p = 0.024). Moreover, an association was found between depression risk and MTHFR rs1801133 genotypes in the controls but not in women with gynecologic cancers (in codominant model CC vs. TT: OR = 3.39, 95%: 1.49-7.74, p = 0.011). Cancers of the female reproductive system are associated with the occurrence of depression, and ovarian cancer may be associated with the rs2236225 variant of the MTHFD1 gene. In addition, in healthy aging women in the Polish population, the rs1801133 variant of the MTHFR gene is associated with depression.


Assuntos
Formiato-Tetra-Hidrofolato Ligase , Neoplasias dos Genitais Femininos , Feminino , Humanos , Formiato-Tetra-Hidrofolato Ligase/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Depressão , Neoplasias dos Genitais Femininos/genética , Carbono , Antígenos de Histocompatibilidade Menor/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase
9.
Braz Oral Res ; 37: e076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531512

RESUMO

This study aimed to assess whether genetic polymorphisms in MTR and MTRR are potential biomarkers of oral health-related quality of life (OHRQoL) in children with caries. A cross-sectional study was designed wherein pairs of parents/caregivers and children (aged two-five years) were selected. Clinical examination was used to detect dental caries, which were classified as low-severity and high-severity caries. The Early Childhood Oral Health Impact Scale (ECOHIS) questionnaire was used to assess OHRQoL. Genomic DNA extracted from the saliva was used to analyze two missense genetic polymorphisms: MTR (rs1805087) and MTRR (rs1801394). Mann-Whitney non-parametric test was used to analyze candidate genes with OHRQoL scale and domain, with a significance level of p≤0.05. MTR (rs1805087) was found associated (p = 0.05) with children's OHRQoL subscale scores in the dominant model (GG + AG). Genetic polymorphisms in MTR may increase the risk of poor OHRQoL in children with caries. Further studies are needed to investigate genetics, molecular factors, and OHRQoL.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Cárie Dentária , Ferredoxina-NADP Redutase , Criança , Pré-Escolar , Humanos , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Estudos Transversais , Cárie Dentária/genética , Saúde Bucal , Qualidade de Vida , Inquéritos e Questionários , Ferredoxina-NADP Redutase/genética
10.
Essays Biochem ; 67(5): 853-863, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37449444

RESUMO

Methionine synthases (MetH) catalyse the methylation of homocysteine (Hcy) with 5-methyl-tetrahydrofolate (5, methyl-THF) acting as methyl donor, to form methionine (Met) and tetrahydrofolate (THF). This function is performed by two unrelated classes of enzymes that differ significantly in both their structures and mechanisms of action. The genomes of plants and many fungi exclusively encode cobalamin-independent enzymes (EC.2.1.1.14), while some fungi also possess proteins from the cobalamin-dependent (EC.2.1.1.13) family utilised by humans. Methionine synthase's function connects the methionine and folate cycles, making it a crucial node in primary metabolism, with impacts on important cellular processes such as anabolism, growth and synthesis of proteins, polyamines, nucleotides and lipids. As a result, MetHs are vital for the viability or virulence of numerous prominent human and plant pathogenic fungi and have been proposed as promising broad-spectrum antifungal drug targets. This review provides a summary of the relevance of methionine synthases to fungal metabolism, their potential as antifungal drug targets and insights into the structures of both classes of MetH.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Antifúngicos , Humanos , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/química , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Virulência , Tetra-Hidrofolatos/metabolismo , Vitamina B 12/metabolismo , Vitamina B 12/farmacologia , Metionina/metabolismo
11.
Magn Reson Med ; 90(4): 1537-1546, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37279010

RESUMO

PURPOSE: Nuclear Overhauser effect magnetization transfer ratio (NOEMTR ) is a technique used to investigate brain lipids and macromolecules in greater detail than other techniques and benefits from increased contrast at 7 T. However, this contrast can become degraded because of B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities present at ultra-high field strengths. High-permittivity dielectric pads (DP) have been used to correct for these inhomogeneities via displacement currents generating secondary magnetic fields. The purpose of this work is to demonstrate that dielectric pads can be used to mitigate B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities and improve NOEMTR contrast in the temporal lobes at 7 T. METHODS: Partial 3D NOEMTR contrast images and whole brain B 1 + $$ {\mathrm{B}}_1^{+} $$ field maps were acquired on a 7 T MRI across six healthy subjects. Calcium titanate DP, having a relative permittivity of 110, was placed next to the subject's head near the temporal lobes. Pad corrected NOEMTR images had a separate postprocessing linear correction applied. RESULTS: DP provided supplemental B 1 + $$ {\mathrm{B}}_1^{+} $$ to the temporal lobes while also reducing the B 1 + $$ {\mathrm{B}}_1^{+} $$ magnitude across the posterior and superior regions of the brain. This resulted in a statistically significant increase in NOEMTR contrast in substructures of the temporal lobes both with and without linear correction. The padding also produced a convergence in NOEMTR contrast toward approximately equal mean values. CONCLUSION: NOEMTR images showed significant improvement in temporal lobe contrast when DP were used, which resulted from an increase in B 1 + $$ {\mathrm{B}}_1^{+} $$ homogeneity across the entire brain slab. DP-derived improvements in NOEMTR are expected to increase the robustness of the brain substructural measures both in healthy and pathological conditions.


Assuntos
Encéfalo , Cabeça , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico , Campos Magnéticos , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase
12.
Trials ; 24(1): 372, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268971

RESUMO

INTRODUCTION: Chronic subjective tinnitus has become an increasingly serious hazard that affects the health-related quality of life for millions of people. Due to the lack of curative treatment strategies, this study aims to introduce a novel acoustic therapy named the modified tinnitus relieving sound (MTRS) for tinnitus and to evaluate the efficacy of MTRS in comparison with unmodified music (UM) which served as a control. METHODS AND ANALYSIS: A randomized, double-blinded, controlled, clinical trial will be carried out. Sixty-eight patients with subjective tinnitus will be recruited and randomly allocated into two groups in 1:1 ratio. The primary outcome is Tinnitus Handicapped Inventory (THI); the secondary outcomes are the Hospital Anxiety and Distress Scale (HADS; HADS subscales for Anxiety (HADS-A) and Depression (HADS-D)), Athens Insomnia Scale (AIS), the visual analog scale (VAS) for tinnitus, and tinnitus loudness matched by sensation level (SL). Assessment will be performed at baseline and at 1, 3, 9, and 12 months post-randomization. The sound stimulus will be persistent until 9 months after randomization, and be interdictory in the last three months. Data collected during the intervention process will be analyzed and compared to baseline. ETHICS AND DISSEMINATION: This trial received ethical approval from the Institutional Review Board (IRB) of Eye & ENT Hospital of Fudan University (No. 2017048). The study results will be disseminated via academic journals and conferences. FUNDING: This study is supported by the Shanghai Shenkang Development Program (SHDC12019119), the Excellent Doctors-Excellent Clinical Researchers Program (SYB202008), the Shanghai Rising-Star Program (23QC1401200), the Shanghai Rising Stars of Medical Talent Youth Development Program (2021-99), the National Natural Science Foundation of China (81800912), and the National Natural Science Foundation of Shanghai (21ZR1411800). TRIAL REGISTRATION: ClinicalTrials.gov NCT04026932. Registered on 18 July 2019.


Assuntos
Zumbido , Adolescente , Humanos , Zumbido/diagnóstico , Zumbido/terapia , Qualidade de Vida , Resultado do Tratamento , China , Som , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
Proc Natl Acad Sci U S A ; 120(26): e2302531120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339208

RESUMO

Cobalamin-dependent methionine synthase (MetH) catalyzes the synthesis of methionine from homocysteine and 5-methyltetrahydrofolate (CH3-H4folate) using the unique chemistry of its cofactor. In doing so, MetH links the cycling of S-adenosylmethionine with the folate cycle in one-carbon metabolism. Extensive biochemical and structural studies on Escherichia coli MetH have shown that this flexible, multidomain enzyme adopts two major conformations to prevent a futile cycle of methionine production and consumption. However, as MetH is highly dynamic as well as both a photosensitive and oxygen-sensitive metalloenzyme, it poses special challenges for structural studies, and existing structures have necessarily come from a "divide and conquer" approach. In this study, we investigate E. coli MetH and a thermophilic homolog from Thermus filiformis using small-angle X-ray scattering (SAXS), single-particle cryoelectron microscopy (cryo-EM), and extensive analysis of the AlphaFold2 database to present a structural description of the full-length MetH in its entirety. Using SAXS, we describe a common resting-state conformation shared by both active and inactive oxidation states of MetH and the roles of CH3-H4folate and flavodoxin in initiating turnover and reactivation. By combining SAXS with a 3.6-Å cryo-EM structure of the T. filiformis MetH, we show that the resting-state conformation consists of a stable arrangement of the catalytic domains that is linked to a highly mobile reactivation domain. Finally, by combining AlphaFold2-guided sequence analysis and our experimental findings, we propose a general model for functional switching in MetH.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Escherichia coli , Microscopia Crioeletrônica , Escherichia coli/metabolismo , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Metionina/metabolismo , Ácido Fólico/metabolismo , Vitamina B 12/metabolismo
14.
Sci Rep ; 13(1): 9424, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296303

RESUMO

To exhaustively explore the association of infant genetic polymorphisms of methionine synthase (MTR) gene with the risk of non-syndromic congenital heart disease (CHD). A hospital-based case-control study involving 620 CHD cases and 620 health controls was conducted from November 2017 to March 2020. Eighteen SNPs were detected and analyzed. Our date suggested that the genetic polymorphisms of MTR gene at rs1805087 (GG vs. AA: aOR = 6.85, 95% CI 2.94-15.96; the dominant model: aOR = 1.77, 95% CI 1.35-2.32; the recessive model: aOR = 6.26, 95% CI 2.69-14.54; the addictive model: aOR = 1.81, 95% CI 1.44-2.29) and rs2275565 (GT vs. GG: aOR = 1.52, 95% CI 1.15-1.20; TT vs. GG: aOR = 4.93, 95% CI 1.93-12.58; the dominant model: aOR = 1.66, 95% CI 1.27-2.17; the recessive model: aOR = 4.41, 95% CI 1.73-11.22; the addictive model: aOR = 1.68, 95% CI 1.32-2.13) were significantly associated with the higher risk of CHD. And three haplotypes of G-A-T (involving rs4659724, rs95516 and rs4077829; OR = 5.48, 95% CI 2.58-11.66), G-C-A-T-T-G (involving rs2275565, rs1266164, rs2229276, rs4659743, rs3820571 and rs1050993; OR = 0.78, 95% CI 0.63-0.97) and T-C-A-T-T-G (involving rs2275565, rs1266164, rs2229276, rs4659743, rs3820571 and rs1050993; OR = 1.60, 95% CI 1.26-2.04) were observed to be significantly associated with risk of CHD. Our study found that genetic polymorphisms of MTR gene at rs1805087 and rs2275565 were significantly associated with higher risk of CHD. Additionally, our study revealed a significant association of three haplotypes with risk of CHD. However, the limitations in this study should be carefully taken into account. In the future, more specific studies in different ethnic populations are required to refine and confirm our findings.Trial registration: Registration number: ChiCTR1800016635; Date of first registration: 14/06/2018.


Assuntos
Predisposição Genética para Doença , Cardiopatias Congênitas , Lactente , Humanos , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Estudos de Casos e Controles , Cardiopatias Congênitas/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Genótipo
15.
Cells ; 12(9)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37174668

RESUMO

Impairment of one-carbon metabolism during pregnancy, either due to nutritional deficiencies in B9 or B12 vitamins or caused by specific genetic defects, is often associated with neurological defects, including cognitive dysfunction that persists even after vitamin supplementation. Animal nutritional models do not allow for conclusions regarding the specific brain mechanisms that may be modulated by systemic compensations. Using the Cre-lox system associated to the neuronal promoter Thy1.2, a knock-out model for the methionine synthase specifically in the brain was generated. Our results on the neurobehavioral development of offspring show that the absence of methionine synthase did not lead to growth retardation, despite an effective reduction of both its expression and the methylation status in brain tissues. Behaviors were differently affected according to their functional outcome. Only temporary retardations were recorded in the acquisition of vegetative functions during the suckling period, compared to a dramatic reduction in cognitive performance after weaning. Investigation of the glutamatergic synapses in cognitive areas showed a reduction of AMPA receptors phosphorylation and clustering, indicating an epigenomic effect of the neuronal deficiency of methionine synthase on the reduction of glutamatergic synapses excitability. Altogether, our data indicate that cognitive impairment associated with methionine synthase deficiency may not only result from neurodevelopmental abnormalities, but may also be the consequence of alterations in functional plasticity of the brain.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Disfunção Cognitiva , Camundongos , Gravidez , Animais , Feminino , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Vitamina B 12
16.
Am J Mens Health ; 17(3): 15579883231176657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249073

RESUMO

The objective of the present study was to find out the association of folate genes MTR A2756G and MTRR A66G polymorphisms with the risk of male infertility. The databases of Google Scholar, PubMed, and Science Direct were searched to find relevant studies. Data were extracted from the eligible studies and were analyzed for pooled up odds ratio (OR) with 95% confidence interval (CI). Review Manager 5.4 was used for statistical analysis. Nineteen case-control studies were included in this meta-analysis which comprised 3621 cases and 3327 controls. Pooled analysis revealed that there is a significant association between MTR A2756G polymorphism with male infertility except for the dominant model. The ORs and 95% CI for each genetic model were as follows: 1.21 [1.03-1.42] for the allele model (G vs. A), 2.31 [1.38-3.96] for the additive model (GG vs. AA), 1.17 [0.98-1.38] for the dominant model (GG+AG vs. AA) and 2.10 [1.55-2.86] for the recessive model (GG vs. AG+AA). MTRR A66G has no noticeable association with male infertility. The current meta-analysis suggests that MTR A2756G polymorphism might be a potential risk factor for male infertility. In the future, the sample size should be increased to confirm the present results.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Ferredoxina-NADP Redutase , Predisposição Genética para Doença , Infertilidade Masculina , Humanos , Masculino , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Estudos de Casos e Controles , Ferredoxina-NADP Redutase/genética , Infertilidade Masculina/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco
17.
Asian Pac J Cancer Prev ; 24(4): 1137-1141, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116134

RESUMO

Methionine synthase reductase (MTRR) gene involved in the signaling for production of enzyme called methionine synthase reductase that use for the synthesis of methionine, which further used in DNA replication and repair. Genetic variation in MTRR gene may alter the susceptibility of developing urinary bladder cancer. The present study undertaken to identify the contribution of genetic polymorphisms in the MTRR gene on the selected polymorphic sites including c.66A>G and c.524C>T towards urinary bladder cancer risk. Direct-DNA sequencing method was applied for the observation of genotyping distribution of MTRR c.66A>G and c.524C>T polymorphisms in 232 histopathological confirmed cases of transitional cell carcinoma (TCC) of urinary bladder cancer and 250 age-, sex- and ethnicity-matched cancer free controls. With significant difference (p = 0.05) of genotype analysis further corresponding Odds ratio (OR) and 95% confidence interval (CI) were calculated. Multivariable logistic regression analysis was applied for adjusting significant confounder variables. Haploview software (version 4.2) was used to perform pairwise Linkage Disequilibrium (LD) analysis. Age (p = 0.01), Habit of smoking (p = 0.05), tobacco consumption (p = 0.001) and diet (p = 0.02) were significantly differed between cases and controls. Both the MTRR substitution showed higher risk of developing urinary bladder cancer (p = <0.001), although this effect alters in multivariable logistic regression analysis in a protective association for both the substitution. No LD observed between the c.66A>G and c.524C>T substitutions. In conclusion, MTRR c.66A>G and c.524C>T substitutions showed a joint effect with the other associated risk factors. Further studies with a greater number of subjects of different ethnicity and polymorphisms are recommended for the better understanding urinary bladder cancer etiology and to screen the population who are at higher risk of developing urinary bladder cancer.


Assuntos
Polimorfismo Genético , Neoplasias da Bexiga Urinária , Humanos , Genótipo , Ferredoxina-NADP Redutase/genética , Fatores de Risco , Neoplasias da Bexiga Urinária/genética , Estudos de Casos e Controles , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Predisposição Genética para Doença , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética
18.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36941127

RESUMO

For decades, the industrial vitamin B12 (cobalamin) production has been based on bacterial producer strains. Due to limited methods for strain optimization and difficult strain handling, the desire for new vitamin B12-producing hosts has risen. As a vitamin B12-independent organism with a big toolbox for genomic engineering and easy-to-handle cultivation conditions, Saccharomyces cerevisiae has high potential for heterologous vitamin B12 production. However, the B12 synthesis pathway is long and complex. To be able to easily engineer and evolve B12-producing recombinant yeast cells, we have developed an S. cerevisiae strain whose growth is dependent on vitamin B12. For this, the B12-independent methionine synthase Met6 of yeast was replaced by a B12-dependent methionine synthase MetH from Escherichia coli. Adaptive laboratory evolution, RT-qPCR, and overexpression experiments show that additional high-level expression of a bacterial flavodoxin/ferredoxin-NADP+ reductase (Fpr-FldA) system is essential for in vivo reactivation of MetH activity and growth. Growth of MetH-containing yeast cells on methionine-free media is only possible with the addition of adenosylcobalamin or methylcobalamin. A heterologous vitamin B12 transport system turned out to be not necessary for the uptake of cobalamins. This strain should be a powerful chassis to engineer B12-producing yeast cells.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Vitamina B 12/metabolismo , Metionina/metabolismo , Bactérias
19.
J Med Microbiol ; 72(3)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36927577

RESUMO

Introduction. Legionella pneumophila is a Gram-negative flagellated bacteria that can infect human lungs and cause a severe form of pneumonia named Legionnaires' disease.Hypothesis. We hypothesize that L. pneumophila infection induces methylomic changes in methylcytosine dioxygenases, ten-eleven translocation (TET) genes, and controls DNA methylation following infection.Aim. In the current research, we sought to further investigate DNA methylation changes in human lung epithelial cells upon L. pneumophila infection and determine how methylation inhibitor agents disturb L. pneumophila reproduction.Methodology. A549 cell line was used in L. pneumophila infection and inhibitors' treatment, including 5-azacytidine (5-AZA) and (-)-epigallocatechin-3-O-gallate (EGCG).Results. Interestingly, DNA methylation analysis of infected A549 using sodium bisulfite PCR and the methylation-sensitive HpaII enzyme showed potential methylation activity within the promoter regions of ten-eleven translocation (TET) genes located on CpG/397-8 and CpG/385-6 of TET1 and TET3, respectively. Such methylation changes in TET effectors decreased their expression profile following infection, indicated by quantitative real-time PCR (RT-qPCR), immunoblotting and flow cytometry. Furthermore, pre-treatment of A549 cells with 5-AZA or EGCG significantly decreased the bacterial reproduction characterized by the expression of L. pneumophila 16S ribosomal RNA and the c.f.u. ml-1 of bacterial particles. Moreover, both methylation inhibitors showed potent inhibition of methionine synthase (MS) expression, which was further confirmed by the docking analysis of inhibitor ligands and crystal structure of MS protein.Conclusion. These data provide evidence for the methylomic changes in the promoter region of TET1 and TET3 by L. pneumophila infection in the A549 cell line and suggest the anti-bacterial properties of 5-AZA and EGCG, as methylation inhibitors, are due to targeting the epigenetic effector methionine synthase.


Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Pulmão/microbiologia , Doença dos Legionários/metabolismo , Doença dos Legionários/microbiologia , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Células Epiteliais/microbiologia , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
20.
J Steroid Biochem Mol Biol ; 231: 106303, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990164

RESUMO

BACKGROUND: Homocysteine (Hcy) is a synthetic amino acid containing sulfhydryl group, which is an intermediate product of the deep metabolic pathway of methionine and cysteine. The abnormal increase in fasting plasma total Hcy concentration caused by various factors is called hyperhomocysteine (HHcy). HHcy is closely relevant to the occurrence and progression of diverse cardiovascular and cerebrovascular diseases, such as coronary heart disease, hypertension and diabetes, etc. Vitamin D/vitamin D receptor (VDR) pathway is pointed out that prevent cardiovascular disease by reducing serum homocysteine levels. Our research is designed to explore the potential mechanism of vitamin D in the prevention and treatment of HHcy. METHODS AND RESULTS: The Hcy and 25(OH)D3 levels in mouse myocardial tissue, serum or myocardial cells were detected using ELISA kits. The expression levels of VDR, Nrf2 and methionine synthase (MTR) were observed using Western blotting, immunohistochemistry and real time polymerase chain reaction (PCR). General information of the mice, including diet, water intake and body weight, was recorded. Vitamin D up-regulated the mRNA and protein expression of Nrf2 and MTR in mouse myocardial tissue and cells. CHIP assay determined that the combination of Nrf2 binding to the S1 site of the MTR promoter in cardiomyocytes using traditional PCR and real time PCR. Dual Luciferase Assay was applied to detect the transcriptional control of Nrf2 on MTR. The up-regulation effect of Nrf2 on MTR was verified by Nrf2 knockout and overexpression in cardiomyocytes. The role of Nrf2 in vitamin D inhibition of Hcy was revealed using Nrf2-knockdown HL-1 cells and Nrf2 heterozygous mice. Western blotting, real time PCR, IHC staining and ELISA showed that Nrf2 deficiency could restrain the increase in MTR expression and the decrease in Hcy level induced by vitamin D. The transcriptional activities of Nrf2/MTR were activated by vitamin D/VDR with a decrease in Hcy. CONCLUSION: Vitamin D/VDR upregulates MTR in an Nrf2-dependent manner, thereby reducing the risk of HHcy.


Assuntos
Fator 2 Relacionado a NF-E2 , Vitamina D , Camundongos , Animais , Vitamina D/farmacologia , Fator 2 Relacionado a NF-E2/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Vitaminas , Metionina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...